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ELEMENTARY THEORY OF PSEUDO-TURBULENCE IN FINELY-DISPERSED 

SUSPENSIONS 

Yu. A. Buevich and A. M. Isaev UDC 532.545 

Relations are obtained to characterize the standard deviations of fluctuation 
velocity and the self-diffusion coefficients of the phase in flows of suspen- 
sions of small particles. 

Suspended particles and fluid moles are brought into small-scale pulsative (pseudo- 
turbulent) motion even in flows of suspenions which are macroscopically uniform, and this 
motion has a significant effect on the distribution of the phases in the flows and the ef- 
fective heat- and mass-transfer coefficients. Energy for the pulsations is supplied by 
the work done by the carrier flow against fluctuations in the concentration of the suspen- 
sion. The forces acting on individual particles differ from the local mean value, which 
leads to acceleration of the particles. As they accelerate, the particles entrain adjacent 
moles of fluid [i, 2]. 

The theory of pseudo-turbulent motion is based on representation of the fluctuations of 
the concentration, pressure, and velocity of the particles and the fluid in the form of 
steady-state random functions. These functions are analyzed using the equations of fluctu- 
ational gasdynamics, which are in turn obtained directly from the averaged equations of mass 
and momentum conservation for the phases of a suspension [3, 4]. The calculations prove to 
be very cumbersome in this case. In addition, there is a logical contradiction; the linear 
scale of the unknowns in the averaged equations is assumed to be much greater than the di- 
mensions of the particles in the suspension, but these equations are in essence being used 
to describe fluctuations with a scale on the order of these dimensions. Here, we attempt to 
circumvent this problem and at the same time simplify the calculations. 

We will examine a flow of a monodisperse suspension of fine spherical particles. The 
local values of the mean phase velocities and the pressure and concentration of the particles 
are determined from the solution of the hydrodynamic equations of the suspension and, in the 
analysis of pseudo-turbulence, are assumed to be known quantities independent of the coordin- 
ates and time. The latter assumption is justified by the fact that the temporal and linear 
scales of these means must be significantly greater than the corresponding scales for the 
pulsations. 
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The Lagrange equation for a particle is obtained by taking the equation expressing 
Newton's second law and subtracting the corresponding averaged equation. The Lagrange equa- 
tion can be written in the form mdw'/dt = F' Multiplying this by the mean numerical con- 
centration of particles n - which is assumed to be constant - we obtain the fluctuation 
equation 

9ddiw'/dt ~ nF'. (i) 

In the case of sufficiently fine particles, the phase interaction force is equal to the 
sum of the Stokes, Basse, and Faxen forces, buoyancy, and the forces associated with accel- 
eration of the apparent additional mass of the fluid. This sum was calculated in [5] for a 
suspension of moderate concentration. A component of the phase interaction force which is 
dependent on the gradient of the mean concentration may also be manifest in a macroscopical- 
ly nonuniform suspension. Evaluating these forces is difficult in a highly concentrated 
suspension. However, in keeping with obvious physical considerations, it can be assumed 
that the main contribution to the fluctuation force F' will be made by the component due to 
viscous interaction of the particles and the fluid. This component in turn depends on the 
local concentration of the disperse phase in the neighborhood of the given particle. The 
analogous component of the total force acting on the particle can be represented as 6~a~0 K. 
(v -w), where K is a function of p which increases monotonically from unity at p = 0. Thus, 
we approximately take nF'Ip~K(v'--w ~) +~(dK/dp)up', where ~=9~0/2a2; u= <v>--<w>, while K and its 
derivative are calculated with p = <p> (to simplify the notation, we will henceforth omit 
the brackets for the means). If d o ~ d I, then ignoring the inertial terms in the right side 
of (i) also requires ignoring the inertia of the particle itself. Otherwise, the error will 
be too large. Thus, in the noninertial approximation being examined, we have 

v' - - w '  + (dlnK/d9) u9' ~ O. (2)  

It should be noted that we also ignored the resulting effect of direct collisions be- 
tween particles in (2). This omission corresponds to a collision-less approximation in which 
all interactions between particles are mediated by the fluid. 

Ignoring the fluctuation of buoyancy in (2) corresponds to the assumption that the par- 
ticle is suspended in a medium with a constant density d = sd 0 + pd I. This is in turn equiv- 
alent to the assumption p = const, which we will use in analyzing the fluctuations of the 
velocity of the fluid moles. 

The analog of Eq. (i) for the fluid has the form 

edoOv'/Ot = - - V p ' - - n F ' .  (3 )  

For simplicity, here we ignored the viscosity of the fluid. Also, examining motion in the 
coordinate system connected with the mean local velocity of the suspension and assuming u 
to be small, we replaced the complete derivative with respect to time by the partial deriva- 
tive; we can proceed similarly with (i). Adding (i) and (3), we arrive at the equation 

eG Or' +gd~ Ow' 
- -  - - - - V P ' ,  ( 4 )  8t 8t 

which we augment by the corresponding continuity equation: 7v' = 0. 

We then follow [3, 4] and use the theory of steady-state random processes [6], repre- 
senting the random variables ~' and ~' in the form of Fourier-Stieltjes integrals: 

{?', ~'}  = [ exp [ i (~ t+  kx)] {dZ~, dZ~}, 

where dZ~, dZ~ are the corresponding random measures. The double-point, double-time corre- 
lation function of these quantities is then represented in the form [6] 

( ~' (t, x) , '  (t .-+- *, x + r) > = [ [ exp [--  i (cot + kv)] ~ r  ((o, k) &odk, 

~ r . ,  (o~, k) ~ ( dZ~dZ$ )/d~dk, 

Meanwhile, with ~ = 0 and r = 0, we obtain an expression for <~'~ >. 

The spectral density of the fluctuations of volumetric concentration of particles will 
be approximated by the expression [7] 
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( dZJZ~, ) kDk 
~p,p(o), k) - -  do~dk 

(I) o p (k) = { O, k -~ ko, (I) -- 3 p2 
' O, k > ko, 4 ~  k~ 

ko = (9np/2)~3a -~, 

~02 + (kDk) ~ 

(5) 

where p, is the maximum permissible volumetric concentration of particles in the flow cor- 
responding to their packing density. Equations (5) constitute a simplified model in which 
the disappearance of fine-scale fluctuations of concentration is described by means of a 
parabolic effective-diffusion equation with the tensor of the self-diffusion coefficients 
of the suspended particles D. 

We can write the following for the components of the tensors of the self-diffusion co- 
efficients of the particles and fluid moles in the approximation being examined [3, 4] 

D~J=~SW~i ,~ , (O,  k) dk, E , , = a f  V~,.~,(0, k)dk. 

In  t h e s e  f o r m u l a s ,  i n t e g r a t i o n  i s  c a r r i e d  ou t  over  t h e  e n t i r e  a x i s  o f  f r e q u e n c i e s  
and wave space  k.  The f i r s t  p roblem i s  to  f i n d  r e p r e s e n t a t i o n s  f o r  t h e  d i f f e r e n t  s p e c t r a l  
d e n s i t i e s  W~,,(~, k) t h r o u g h  t h e  known s p e c t r a l  d e n s i t y  (5)  o f  t h e  v o l u m e t r i c  c o n c e n t r a t i o n  
f l u c t u a t i o n .  

E q u a t i o n s  (2)  and (4)  and t h e  c o n t i n u i t y  e q u a t i o n  l e a d  us to  a sys tem of  l i n e a r  a l g e -  
b r a i c  r e l a t i o n s  f o r  t h e  random m e a s u r e s :  

which in particular leads to 

dZ. - -  dZw == (d In K/dp) udZp, 

and then 

(o (edodZ. + pdldZ~) = - -  kdZp, kdZ,, = O, 

dZ~ -- Pdl d lnK u - -  ~ dZp, 
d dp k ~ 

d Z w = [ ( 1  pdl)d - u+--Pd~d (uk) k ] k  2 __dlnKdp dZp, 

d = edo + pd 1 

(6)  

\ - - T - J  , 

] (  dln  d----f-- ' 

' d u#j 
+ - ~ ( 1  d~P ) (umkm)(uikj-~-ujk~) 

�9 d .k 2 

.j_ ( _ ~ ) 2  ~ (u'~flm)~k~kJk~ ] ( dp ~O, )2 

(7) 

(summation is performed over repeating tensor indices). 

It is natural to choose the axis along the vector u of the mean relative velocity of 
the phases as one of the coordinate axes (for the sake of definiteness of the first axis); 
then u I = u6il. It can readily be seen from (7) that the coordinates of the pseudo-turbulent 
motion being studied are axisymmetric and in particular that kDk==Dllk~ +O22(k~--k~). 

Using (5) and (7) and integrating, we find expressions for the dimensionless principle 
self-diffusion coefficients of the particles: 
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Fig .  1. Dependence o f  t h e  c o e f f i c i e n t s  o f  a n i s o -  
t r o p y  of  t h e  s e l f - d i f f u s i o n  of  t h e  p a r t i c l e s  ( a )  
and f l u i d  (b)  on t h e  v o l u m e t r i c  c o n c e n t r a t i o n  o f  
t h e  s u s p e n s i o n  a t  d i f f e r e n t  ~ (numbers n e x t  to  
t h e  c u r v e s ) ;  p ,  = 0 .6 .  

D I  - -  

D2 -- 

Dll __ 3 ( @ ) 2 / 3  psm ( 1 9 ) / d l n K ) 2  
au D 1 -  De 9, I a~o k 

• [(1 - -  z)2Io + 2z (1 - z) I~ -t- z2I~l, 

• (I2 - -  I 0 ,  
1 

In [ t'~dt yz D~ d19 
b' r + gz D1 -- D2 d 

(8) 

u 
It is not hard to use these expressions to then obtain an equation for the coefficient 

"~ Z z "7, L ) 2Y ~ [ d - z ? & + 2 z ( 1 - z )  L_+z~[~] - ( 1  + ~) , ~--_~, 

from which it is evident in particular that at K + 0 (system of gas bubbles in a liquid), 

u § 0 and D2/D I § 0. Similarly, at < + ~ (suspension of solid particles or drops in a gas), 
we obtain 2y214 = (i + y2)(I 2 - 14) and then y § 0.85 and Da/D I § 0.42, which corresponds to 
the result in [4]. The equation for y is conveniently represented in the form 

1.--z  _ 1 - - - 9  I__L_2 [ { 1  + 
z • Io [~ 261I~ 

yz dl 

1 + ?~ do 

1 2 = l - - ? a r c t g - - , 1  I ~ -  1 
? 3 

I 2 + ( 1 - - 2 6 0 1 ~  io )  I/2 

1 1 
1o = -- arc tg  , 

Y Y 

1 
?z + ~3 arctg . 

Y 

-I] 

Figure i shows the dependence of 6 1 = D2/D I on p for different <. it is evident from 
the figure that this quantity is monotonic and increases very rapidly with an increase in 

both 0 and K. 

We can also use (8) to obtain the relations 

(9 )  

self-diffusion coefficients of the fluid moles 

E~ = E~ F~ ( 9_~ ) I/3z? [o-- 21z + L~ 
a[~ (12 - -  1~)1/2 

E z =  E~2 __ Ea3 ~6oE> 60 1 
au art 2 

pzt3( l p )1/2 d l n K  
P, do ' (11)  

[2 - -  It~ 

Io - -  212 + I~ 
913 

Using (5) and (7), we obtain the following expressions for the dimensionless principal 

z l + v  z ( )~/2 
- - -  (Iz - -  I~) ~/z92/3 1 9 d In K D~ = 61D 1. ( 10  ) 

D1 (6~z)t . 7 , 9, d----~' " 
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Fig.  2. Dependence of p of t he  c o e f f i c i e n t s  of  lon-  
g i t u d i n a l  self-diffusion of the particles (a) and 
the fluid (b) with different ~ (numbers next to the 
curves); p, = 0.6. 
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Dimensionless RMS longitudinal components 
of the fluctuation velocities of the particles (a) 
and fluid (b) at p, = 0.6 and different < (numbers 
next to the curves). 

For specific calculations of the self-diffusion coefficients, it is necessary to deter- 
mine the function K(p). The value K = (i - 5p/2) -I was obtained in [5] for suspensions of 
moderate concentration. The same relation is very awkward, however, for highly concentrated 
suspensions [8]. Here, for simplicity we will use the approximate formula 

1 d l n K  5/2 
K - , - - =  , (12) ( l - -p )  51z dp 1 - - p  

This formula is valid as an approximation throughout the interval 0 ~ p ~ p,. The relations 
D l and E l from (i0) and (ii) corresponding to (12) are shown in Fig. 2. 

Now let us calculate the standard deviations of the velocities of the particles and 
fluid moles. After integrating with the use of Eqs. (7) for the spectral densities, we ob- 
tain expressions for the dimensionless RMS components of particle fluctuation velocity: 

�9 ( )I( )j W1 = ( wl 2 > ~Jz 4 8 z2 p d l n K  - -  l - - - - z + - -  p I - - - -  ~ ,  
u 3 15 p* dp 

'2 1'2 ( / 1/2 W~-= ( ws ) ~,2 ( w3 ) _ z 9 d l n K  (13) 
u - -  u U ~  p 1 P* , do \ 

and fluid fluctuation velocity: 

V~= (v;2)~J~ l / /  8 ( u = - ~ - z p  1 

�9 ,9 
V,~ -~:- < [/22~t ) 1/2 ---- <; U3-lt ) 1[2 V ~Z P [ 1 

p )1/2 d l n K  , (14) 
p* dp 

p )l/2 d l n K  
p, dp 
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Fig. 4. Dimensionless transverse 
RMS components of fluctuation 
velocities; the notation is the 
same as in Fig. 3. 

Figures 3 and 4 show the relations from the quantities WI, VI, and W 2 = V 2 from (13) 
and (14) in accordance with Eqs. (12). The general character of these relations is similar 
to the character of the relations obtained in [3, 4]. They all have maxima at values of 
p close to @,. 

The ratio V2/V l does not depend on p or K, while the ratio W2/W l rapidly increases 
with an increase in both of these parameters. Thus, the anisotropy of the pseudo-turbulent 
particle pulsations decreases with an increase in the concentration of the suspension and 
the ratio of the densities of the particle material and fluid. The anisotropy of the fluid 
pulsations remains unchanged in this case. 

Equations (7) also make it possible to express the spectral densities ~p,p(~, k ) through 
�9 vi,wj(~, k ) from (5) and to then find means of the form <vi'~j'>; only the means with i = j 
turn out to be nontrivial. These representations for spectral density can subsequently be 
used to calculate the corresponding correlation functions, which is useful in determining 
the characteristic scales of pseudo-turbulent motion. Omitting such calculations here, we 
note only that the linear scale of pulsations has the order k0 -l, as might be expected. 
The time scale has the order uk 0. From this, it is in principle possible to evaluate the 
limits of applicability of the above-used noninertial approximation. In fact, the condition 
of triviality of the inertial terms in (i) can be written in the form dmuk 0 << SK. Meanwhile, 
u ~ (d I - d)gu/$K, where d m is the density of the material of the heavier phase and gu is 
the component of g in the direction of u. Assuming in accordance with (5) that k 0 ~ a -l, we 
have the inequality a 3 ~ K2~02d02[dm(dl - d0)gu ]-l At gu ~ 103 cm/sec2 for moderately con- 
centrated liquid suspensions (vQ ~ 10 -2 cm2/sec) or aerosols (v 0 ~ i0 -l cm2/sec), we obtain 
a ~ 10 -2 cm. If the particle size does not correspond to this estimate, then the theory 
must be generalized in two directions: On the one hand, it is necessary to consider the 
inertia of the particles (and the apparent additional mass, if the particles are suspended 
in a fluid in drop form); on the other hand, it is necessary to use representations for the 
phase interaction force which are nonlinear with respect to the relative velocity of the 
phases. Such a generalization was made in [4] for aerosols; here, satisfactory agreement 
was obtained with experimental data from the determination of the self-diffusion coefficient 
in the transverse direction in a fluidized bed. 

Along with the above restrictions on the maximum particle size for which the theory is 
valid, there is another restriction on the minimum particle size. The latter is due to the 
fact the particles are brought not only into pseudo-turbulent motion, but also normal Brown- 
Jan motion. Brownian motion was not considered in the above case. It is clear that this 
omission will be acceptable only if the characteristic velocity or energy associated with 
the Brownian motion of the particles is much lower than their pseudo-turbulent velocity or 
energy corresponding to the degree of freedom in question, i.e., it is necessary to satisfy 
the inequality kT << m<wi'2>, where kT is the temperature in energy units. At room tempera- 
ture, this inequality leads to estimates a ~ 10-4-10 -2 cm and a ~ 10-5-10 -4 cm of the approx- 
imate validity of the proposed model for evaluation of the transverse and longitudinal com- 
ponents of fluctuation velocity, respectively. In principle, the effect of Brownian motion 
can be allowed for by introducing into (i) and (2) a new random force that will be isotropic, 
be statistically independent of concentration fluctuations, and have the spectral density 
of white noise. 

NOTATION 

a , particle radius; d, density; Dij, Eij, self-diffusion coefficients of the particles 
and fluid moles; D i, E i, dimensionless principal self-diffusion coefficients; E, force acting 
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on a particle; g, acceleration due to gravity; k , wave vector; k 0, maximum value of k deter- 
mined in (5); K, function describing the effect of physical constraint on the viscous force 
of the phase interaction; m, mass of particle; n, numerical concentration of particles; p, 
pressure; u , mean relative velocity of the phases; v , w, velocities of the fluid and parti- 
cles; V i, W i, dimensionless fluctuation velocities; 6 o = E2/Ez; K = dz/d0; ~, ~, absolute 
and kinematic viscosities; Q, p,, volumetric concentration of particles and the concentra- 
tion corresponding to the packing density; m, frequency; #, ~, spectral densities. The 
subscripts 0 and i respectively denote the fluid and particles; the primes denote fluctua- 
tion quantities; the brackets denote averaging. 

. 
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NUMERICAL MODELING OF TURBULENT FIELDS OF VELOCITY, TEMPERATURE, 

AND CONCENTRATION IN A RECTANGULAR CHANNEL 

A. A. Mikhalevich, V. I. Nikolaev, and V. K. Fedosova UDC 536.24:532.54 

The finite elements method is used to solve a system of three-dimensional 
transport equations in a rectangular channel. 

Introduction. The numerical modeling of flow and heat and mass transfer in complicated 
channels is a new and important means of investigation. The popularity of numerical experi- 
ments employing computers stems from many factors, the most important being the completeness 
of the information, the speed with which it is obtained, and the possibility of modeling a 
wide range of situations - including some that cannot be realized in a physical experiment. 

The mathematical model and application package employed in the present article can be 
used with success to describe and model a wide range of so-called parabolic flows in closed 
channels of complex form. At the current stage of investigation, we will restrict ourselves 
to flows without buoyancy and we will consider only the longitudinal component of the veloc- 
ity vector. The model contains two assumptions connected with Newtonian fluids. The system 
of transport equations is based on the equations of continuity, motion, energy, diffusion, 
and heat conduction. The numerical realization was accomplished on the basis of the finite 
elements method in the Galerkin modification. Below, we report the details of the formula- 
tion and method of solution of the problem. We also generalize the results and present cer- 
tain other results of numerical experiments. 

Mathematical Model. Initial Equations. To describe the hydrodynamic part of the prob- 
lem, we will use the model of parabolic flow in a closed rectangular channel (Fig. i). 
the Navier-Stokes equations for the longitudinal component of the velocity vector have the 
form: 
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